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3D desktop-based virtual environments provide a means for displaying quantitative data in context. 
Data that is inherently spatial in three-dimensions may benefit from visual exploration and analysis 
in relation to the environment in which they were collected and to which they relate. We empirically 
evaluate how effectively and efficiently such data can be visually analyzed in relation to location and 
landform in 3D versus 2D visualizations. In two experiments, participants performed visual analysis 
tasks in 2D and 3D visualizations and reported insights and their confidence in them. The results 
showed only small differences between the 2D and 3D visualizations in the performance measures 
that we evaluated: task completion time, confidence, complexity, and insight plausibility. However, 
we found differences for different data sets and settings suggesting that 3D visualizations, or 2D 
representations respectively, may be more or less useful for particular data sets and contexts. 
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Introduction 

Geovisual analytics considers spatial characteristics as an important dimension in making sense of data 
(Andrienko et al. 2010). Thus, data that are inherently spatial in three-dimensions may benefit from being 
visually explored and analyzed in the context of the landscape or other three-dimensional aspects of the 
environment to which they relate. Earlier research (Bleisch, Dykes, and Nebiker 2008; Bleisch 2011) has shown 
some potential for displaying quantitative data as data graphics in 3D desktop-based virtual environments. The 
study presented here evaluated the performance of this 3D geovisualization technique for visual data analysis by 
integrating the results from two experiments employing quantitative data graphics with different data sets and 
tasks.  

Background 

3D desktop-based virtual environments are popular in science (e.g., Slingsby, Dykes, and Wood 2008), teaching 
(e.g., Patterson 2007), and for everyday use (e.g., Bartoschek and Schönig 2008). Software for the creation of 
virtual environments, such as Google Earth (http://www.google.com/earth/), is readily available and it is 
comparatively easy to integrate a range of spatial data sets and represent these graphically for exploratory 
visualization (Wood et al. 2007). However, evaluations on processes, for example, how visualizations are used 
to visually analyze data and to generate knowledge, are very rare (Lam et al. 2011) - and this is especially true 
for 3D geovisualizations. Similarly, research on how to most efficiently and effectively display quantitative data 
in 3D geovisualizations is sparse. Slocum et al. (2009) list perspective height as a visual variable that they deem 
to be effective for representing numerical values but caution that occlusion and lack of north orientation may 
cause problems. Scientific visualizations in virtual environments (e.g., Butler 2006) display ‘curtains’ of data 
and tools like the Thematic Mapping Engine (Sandvik 2008) implement 2D thematic mapping symbology in 3D 
virtual environments. Some rare advice on how to best use the three dimensions of space is offered by Ware and 
Plumlee (2005). They recommend using the x- and y-axes of the screen coordinates (orthogonal to the line of 
sight) to display information rather than the z-axis - the depth of the 3D environment (along the line of sight). 
The latter is deemed to be more difficult to interpret. Application of this recommendation may result in 
restricting navigation or using billboards - data graphics that always face the viewer (Bleisch 2011). Seipel and 
Carvalho (2012) tested simple comparison tasks with bar charts in 2D and stereoscopic 3D displays finding no 
differences in time or accuracy. However, we still do not know how effective and efficient data displays within 
3D geovisualizations are in the context of data exploration, especially in relation to the environment in which 
data were collected. Gaining insight is a considerably more complex task than comparison and one for which 
geovisual analytics is considered a particularly appropriate approach (Andrienko et al. 2010).  



 

Research aim 

As Shepherd (2008, 200) notes, we may need to overcome the “3D for 3D’s sake” tendency and consider when 
3D is more appropriate than 2D in particular contexts. One such case could be when the data to be analyzed has 
a clear relation to the three-dimensional landscape in which it was collected. As this case has inherent three-
dimensional spatial properties we may make use of a three-dimensional representation even though we are less 
effective at analyzing the depth dimension than the up-down or sideways dimensions of three-dimensional 
representations (Ware 2008). Any deficiencies may be mitigated by the ability to change viewpoint in 3D, 
perhaps at the cost of time spent making such changes. This study aims to help us better understand how well 
three-dimensional representations perform in comparison to more traditional 2D representations, with a 
particular emphasis on such three-dimensional patterns and relationships. The evaluation presented here is based 
on a comparison of quantitative and qualitative analytical task performance measures between different data sets 
(and the environment to which they relate) displayed in 2D representations and 3D desktop-based virtual 
environments. These conditions are termed `2D' and `3D' subsequently. North (2006) claims that insight is the 
purpose of visualization. Consequently, the study described here follows North’s (2006) definition of 
qualitative, complex, and relevant insights for the qualitative task performance measures. We hypothesize that 
3D representations facilitate data analysis in relation to the 3D landform and vice versa 2D representations 
facilitate data analysis in relation to location. Specifically, we want to evaluate whether exploratory data 
analysis tasks that have a direct reference to either location (a 2D concept) or altitude (including landforms and 
height differences) are more efficiently (time) and effectively (confidence, complexity and plausibility) solved 
in the 2D or 3D representations respectively.  

 

Evaluation methods 

We planned and conducted two experiments to evaluate the usefulness of data graphics in 3D desktop-based 
virtual environments - E1 and E2. The experiments used data sets and tasks of varying complexity to compare 
participants' task performance between the 2D and 3D environments. The data in both experiments were 
displayed as single bars (univariate data) or bar charts (multivariate data) without (2D environment) or with 
reference frames (3D environment) following earlier experimental results (Bleisch et al. 2008). To facilitate 
broad participation at different spatial locations both experiments were administered through online 
questionnaires that could be completed remotely. 

Visual analysis tasks 

The definition of tasks is a complex issue in geovisualization evaluations (Tobon 2005). Interaction taxonomies 
(e.g., Yi et al. 2007) often combine navigation, data display manipulation, and analysis tasks. For 3D 
visualizations, which are interactive by nature, it is helpful to separate between the different types as we did not 
test or control for navigation tasks but focused solely on analysis. Additionally, the hypotheses stated required 
task definitions in which exploration and data analysis were performed in relation to the surrounding landscape - 
specifically those in which location and altitude/landform were considered with the source data either 
independently or in combination. Frequently used data analysis tasks include identify, compare, or categorize as 
defined in task taxonomies by Wehrend and Lewis (1990) or Zhou and Feiner (1998). However, they do not 
intuitively support specific definitions of references for the analysis of data, which were core to the current 
hypotheses. The alternative functional view of data and tasks (Andrienko and Andrienko 2006) allows analysis 
tasks to be defined in terms of two components of data: characteristic and reference. Thus, tasks either referring 
to location and/or altitude could be defined. Additionally, the Andrienko and Andrienko (2006) task framework 
allows a wide range of tasks to be defined at different levels of complexity (elementary and synoptic) as is 
relevant to data exploration. This framework was thus used in our experiments to define directed exploratory 
tasks to facilitate ideation (Marsh 2007). 

Experiment E1 

Experiment E1 evaluated whether typical users were able to explore and analyze data representations displayed 
in virtual environments and whether they were able to relate the data representations to altitude and landform. 
Eight univariate data sets of deer tracks recorded at different hours of the day during summer and winter months 
were used to prepare 16 visualizations in 3D (using Google Earth) and 2D (using HTML, SVG and JavaScript). 
Both types allowed interaction such as zooming and panning. Viewpoint change was additionally enabled in 3D 
(Figure 1). Using a within-subject design, 34 informed participants reported insights gained from completing 
seven tasks (Table 1) and judged their confidence in each reported insight on a three-step scale: low, medium, 
high (Rester et al. 2007). Participants were recruited from final year Geomatics courses, and included academic 
staff from the Geomatics and Geography departments of several universities. Participants completed all tasks in 



 

each of two 2D representations and two 3D representations. The seven tasks (Table 1) used were of varying 
complexity (elementary and synoptic) and had different reference sets (Andrienko and Andrienko 2006). Two 
tasks referred to location, three tasks referred to altitude and two tasks referred to location and altitude in 
combination (Table 1). The visualizations were arranged in a balanced order in the different questionnaires to 
counter confounding carry-over effects such as familiarization with a setting, getting used to the tasks or 
tiredness occurring towards the end of a series of several tasks. The questionnaires contained instructions, a test 
task to ensure Google Earth was installed on the system and that JavaScript was enabled, in addition to the 
different visualizations and tasks. They were implemented to be completed online with a current web browser. 
The questionnaires connected to a database and in total 932 insight reports were collected – 468 in the 2D 
condition, 464 in 3D. On average each participant spent 45 minutes on the questionnaire, including reading the 
instructions, testing the installations and completing the seven tasks in each of two 2D and two 3D 
representations. 

Experiment E2 

Experiment E2 extends experiment E1 to multivariate data displays in virtual environments. Two data sets 
consisting of the aggregated four summer and four winter data sets from experiment E1 were used to prepare 
four visualizations in 3D and 2D. Once again we used Google Earth for the 3D condition and HTML, SVG and 
JavaScript for the 2D condition. Both conditions allowed interaction such as zooming and panning, and 
viewpoint change was available in the 3D case (Figure 2). Data analysis showed that the seven tasks used in E1 
strongly influenced the participants in their analysis as indicated, for example, by their use of words in the 
reported insights that were similar to those used in describing the task. Thus, experiment E2 employed one 
synoptic exploratory task (referring to location, altitude and time of the day, cf. Table 1, task E2.1) in which 
participants were asked to report all insights gained from visually analyzing the data (Rester et al. 2007) and 
thus resulting in a less guided data exploration session. In a within-subject design, 38 informed participants 
reported insights and judged their confidence in each insight when visually analyzing one 2D and one 3D 
representation. Participants were final year Geomatics students – from a different but comparable cohort to 
those who had participated in E1. The representations, together with experiment instructions and a test task to 
ensure that Google Earth and JavaScript were working, were implemented as online questionnaires that could be 
completed in a web browser. Once again, the questionnaires contained the representations in a balanced order to 
counter confounding factors. The questionnaires connected to a database and in total 522 insights were collected 
– 260 in the 2D case and 262 in the 3D case. On average each participant spent 50 minutes completing the 
questionnaire, including reading the instructions, testing installations and working on the task with the two data 
sets and representations. 

 
Figure 1. Quantitative data and map background (1:25000 © 2014 swisstopo (BA14010)) of the eight different 
settings (W1-W4, S1-S4) in the 2D (HTML, SVG and JavaScript, left pairs) and 3D (Google Earth, right pairs) 
settings. 



 

The data used for the different settings in E1 and E2 were different subsets and aggregations of tracking data 
associated with a single deer (eight different settings in E1, cf. Figure 1, and two different settings in E2, cf. 
Figure 2). To account for the influence of different topographies on the analysis, the subset of the data collected 
during the winter months was spatially shifted to a nearby area that is also frequented by roaming deer. These 
settings are labeled `W' (winter) in Figures 1 and 2, with settings in which the deer data are displayed in their 
original environment labeled `S' (summer). This procedure could have resulted in the loss of some of the 
connection the deer tracks have with the environment. However, this influence is likely to be minimal as the 
area into which the data was shifted is also frequented by deer and their movements are generally more limited 
during wintertime. 

 

 
Figure 2: Quantitative data and map background (1:25000 © 2014 swisstopo (BA14010)) of the two different 
settings (W and S) either in 2D (HTML, SVG and JavaScript) or 3D (Google Earth) 

 

Data analysis 

The insights collected in experiment E1 and experiment E2 were analyzed through task completion times and 
participants' confidence ratings. Additionally, reported insights were qualitatively analyzed and coded. Data of 
quantitative or ordinal nature, such as recorded task times, confidence ratings or categorical data from the 
qualitative analysis were analyzed using appropriate statistical tests. Judgment of significance was made at a 
level of 95%. As the experiments were administered through online questionnaires it is difficult to control the 
participants’ precise actions and thus task completion times. A few task completion times from insights with 
comments like “I answered a phone call” as well as three extreme outliers (as compared to the rest of the values 
of the concerned participants) were removed from the data set. The insights were coded by three independent 
researchers for complexity and plausibility -- both on a three-step scale: low, medium and high (Rester et al. 
2007) - and reference type - location (L), altitude (A) or a combination of both (LA). The coding dictionary for 
reference types comprised two categories (location, altitude) with the same three subcategories each: datum, 
object and relation/description (cf. Table 2). Each reported insight was analyzed for words defined through the 
coding dictionary and the words used in reporting the insights coded accordingly. Coding insight is inherently 
subjective (North 2006) and objectivity is achieved through strict coding practices. Reliability of the manual 
coding process was ensured by comparison of repeated coding processes of the same researcher as well as 
comparison of the coding between researchers to check for intercoder reliability (Neuendorf 2002). No 
significant differences were found within and between the coders except for the coding of 2D complexity 
between two researchers (X2=6.08, df=2, p-value=0.048). 2D complexity was then recoded after the coding 
guide had been studied once again by coders and no significant difference was found between coders in the 
recoded 2D complexity. At the end of both experiments participants were able to comment generally on the 
experiment, an opportunity of which most participants took advantage. These comments were analyzed for their 
content and categorized. The results of this analysis were used in triangulation together with the results from the 
insight analysis.  



 

 
# task reference(s) 
E1.1 Which area is most often visited by the deer? location (L) 
E1.2 Which altitude/altitude range is most often visited by the deer? altitude (A) 
E1.3 Generally, compare the number and distribution of deer visits in 

the lower areas to the number of deer visits in higher areas? 
altitude (A) 

E1.4 Compare the location and altitude of areas with similar deer visit 
patterns? 

location & 
altitude (LA) 

E1.5 In which area(s) does the number of deer visits increase with 
increasing altitude? 

location & 
altitude (LA) 

E1.6 Describe the deer visit patterns in relation to altitude and 
landform (surface / topographic features and undulations. 

altitude (A) 

E1.7 Describe the deer visit patterns in relation to location and land-
cover? 

location (L) 

E2.1 Analyze the deer data and describe the deer habits regarding 
location, altitude and time of the day. 

location & 
altitude (LA) 

Table 1. Directed exploratory tasks for experiment E1 (tasks E1.1 - E1.7) and experiment E2 (task E2.1) 
referring either to location (L) or altitude (A) or a combination of location and altitude (LA). 
 
 
category (label) subcategory example words 
location (L) datum D3, F4 (grid squares) 
 (L) object forest, scree, grassy 
 (L) relation/description north, left, south-east 
altitude (A) datum 1950m, 2400m 
 (A) object mountain, slope, ridge 
 (A) relation/description steep, lower, highest 

Table 2. Word categories used to classify an answer/insight into either referring to location, altitude or a 
combination of both. 
 
 

Results 

Comparing performance measures between 2D and 3D 

Overall, comparing task times, confidence ratings, complexity and plausibility measures between the 2D and 3D 
representations in both experiments E1 and E2 did not reveal any significant difference between the 2D and 3D 
settings (Figure 3). 

 

 
Figure 3: Comparison of the performance measures time, confidence, complexity and plausibility (columns) 
between 2D and 3D for the experiments E1 and E2 (rows). No statistically significant differences were found at 
a significance level of 95%. 
 



 

Comparing performance measures between reference sets 

Each task in E1, as well as each collected insight report in E1 and E2, had its own reference set. It referred 
either to altitude (A), location (L) or a combination of both (LA) based on the terms used in describing the task 
(see Data Analysis section). Thus we were able to compare times, confidence ratings, complexity and 
plausibility measures for different reference sets and to evaluate our hypotheses that the 3D representation 
facilitates tasks relating to altitude and that 2D representations facilitate tasks referring to location. The data 
analysis showed a statistically significant difference (at level 95%) in E1 for the plausibility ratings with the LA 
reference set (combination of location and altitude) between 2D and 3D (marked with * in Figure 4). The 
insights reported from the LA reference set in 3D were less often of high plausibility but more frequently of 
medium or low plausibility than in the 2D case. However, none of the other performance measure comparisons 
revealed a statistically significant difference between the different reference sets (Figure 4). Overall, neither the 
3D nor the 2D representations seemed to either facilitate or hinder data exploration in either the 2D or the 3D 
representation. 

 

 
Figure 4: Comparison of the performance measures time, confidence, complexity and plausibility (columns) 
between the different reference sets of the insights in 2D and 3D for the experiments E1 and E2 (rows). 
Generally, no statistically significant differences (at significance level 95%) were found between 2D and 3D for 
the different reference sets. The only statistically significant difference was in E1 for plausibility ratings with 
reference set LA (combination of location and altitude) between 2D and 3D (marked *) (X2=6.09, df = 2, p-
value = 0.048). 
 

Comparing performance measures between experiments 

Figures 3 and 4 show some differences and trends when comparing the two experiments E1 and E2. For 
example, participants were significantly more confident when reporting insights based on one generic task in E2 
than reporting on the seven more specific tasks in E1 (2D: X2=14.72, df=2, p-value=0.001; 3D: X2=18.53, df=2, 
p-value<0.001). Additionally, the synoptic task in E2 led to significantly more complex insights being reported 
(2D: X2=93.74, df=2, p-value<0.001; 3D: X2=79.56, df=2, p-value<0.001). Experiment E1 used seven tasks 
(Table 1) to guide the participants in exploring the data in relation to location, altitude or a combination of 
location and altitude. The single task in E2 did refer to location or altitude and was designed to give the 
participants more freedom in reporting their findings. This seems to have resulted in more complex insights 
being reported. As Figure 5 shows, participants were able to perform data analysis in relation to altitude 
(compare L, A, and LA reference sets of insight reports in E1). However, they reverted to reporting findings 
relating mainly to location when they were less strongly guided by the task (compare L, A, and LA reference 
sets of insights in E2 in Figure 5). This is also clearly shown in Figure 6, which compares the task reference sets 
to the insight references in E1. Asking for analysis in relation to location, altitude or a combination of both 
yielded insights with reference to location or altitude respectively (Figure 6). Additionally, the comments in E1 
contained statements from participants explaining that they were not used to evaluating data in relation to the 
landform and that they found it difficult to do so. This is also shown in Figure 4 where the confidence ratings 
and also plausibility for the A and LA tasks in E1 are generally lower than for the L tasks. These findings may 
indicate that either the exploration of data in relation to the landform is not common or that the participants in 
this study were less `informed' than we anticipated given their backgrounds. 

 



 

  
Figure 5: Comparison of relative quantities of 
reference set usage (location L, altitude A or both LA) 
in the insights reported in E1 and E2. 
 

Figure 6: Comparison of relative quantities of 
reference set usage (location L, altitude A or both LA) 
in the insights reported in E1 compared to the task 
references (tasks referring to location tL, tasks 
referring to altitude tA and tasks referring to a 
combination of location and altitude tLA). 
 

Comparing performance measures for different settings 

All the settings in E1 and E2 used similar data - different subsets and aggregations of tracking data recorded by 
a single animal, as described in the Evaluation Methods section. However, comparing time, confidence, 
complexity and plausibility measures between the settings for E1 and E2 (Figure 7) showed that there were 
some significant differences between 2D and 3D. The summer setting in E1 is a case in point, where more time 
was required in 3D than 2D (Z=-2.01, p-value=0.044) and more insights of high plausibility were yielded in 2D 
than 3D (X2=8.27, df=2, p-value=0.016). The winter setting in E2 also revealed differences between the 2D and 
3D conditions as participants were more confident about the findings reported in the 3D case compared to 2D 
(X2=10.57, df=2, p-value=0.005). 

 

Figure 7: Comparing the performance measures time, confidence, complexity and plausibility for the different 
settings (W and S) between 2D and 3D. 
 

Looking for trends in the eight different data sets in E1 we found differences between 2D and 3D for the task 
performance measures for most data sets (Figure 8). Small number of results in a few categories prevented 
statistical testing for significance as the research was not originally set up to detect differences in analysis 
between settings and data sets. Nevertheless, summarizing the trends in Figure 8 it seems that some settings and 
data sets may be better analyzed either in 2D or 3D or using a combination of both representation types. In the 
case of just one setting and data set (W2) analysis in 2D or 3D seem to be equally successful with regard to the 
evaluated performance measures. 

Setting W1: Insights were reported more rapidly and with less variation in the times taken in 3D. Participants 
were more confident in their reported insights in 3D but the results for complexity and plausibility were similar 
for 2D and 3D. We conclude that setting W1 is faster and analyzed with more confidence in 3D.  



 

Setting W2: The results for time, confidence, complexity and plausibility were similar for the 2D and 3D 
conditions in setting W2. We conclude that setting W2 is equally successfully analyzed either in 2D or 3D.  

Setting W3: Insights were reported more quickly and with less variation in completion time in 2D. The results 
for confidence and plausibility were similar for 2D and 3D. However, the 3D setting shows a trend for a higher 
number of insights of high and medium complexity. We conclude that setting W3 is analyzed more rapidly in 
2D but may yield more complex insights in the 3D setting.  

Setting W4: Reporting time, complexity and plausibility of insights in setting W4 were similar for 2D and 3D 
with some trends such as 3D being slightly quicker but yielding fewer highly plausible insights. Participants 
were more confident in their reported insights in 2D. We conclude that setting W4 may best be analyzed using a 
combination of 2D and 3D representations.  

Setting S1: Setting S1 was analyzed more quickly in 2D but with more confidence in the 3D case. A trend 
towards more complex insights in 3D was apparent. Plausibility was similar for 2D and 3D. We conclude that 
setting S1 may be analyzed most effectively using a combination of 2D and 3D representations.  

Setting S2: Insights were reported more quickly in 2D. The results for confidence, complexity and plausibility 
were similar for 2D and 3D. We conclude that setting S2 is analyzed more rapidly in 2D.  

Setting S3: The results showed similar analysis times and complexity for 2D and 3D. However, insights were 
reported with more confidence in 3D but higher plausibility in 2D. We conclude that setting S3 may best be 
analyzed using a combination of 2D and 3D representations.  

Setting S4: The results of setting S4 showed less variation in insight reporting times in 3D. However, insights 
were reported with higher confidence, complexity and plausibility in 2D. We conclude that setting S4 may be 
more successfully analyzed in 2D than 3D.  

These trends may suggest that analysis in 2D, 3D or a combination of both types of representation may be 
preferable dependent on the data and setting. Only setting W2 seems to be analyzed with comparable levels of 
success in either representation type. Relating these preferences back to specific characteristics of the settings, 
such as topography, and data sets (number, range and distribution of the data values) used in these experiments 
proved difficult. We found no clear relationship between setting characteristics and improved performance in 
terms of the analysis of the data in one representation type or the other. However, this data dependent finding 
draws attention to the fact that open designs, in which a variety of options for display and interaction can be 
accessed quickly and smoothly, may well be important. We are however unable to make predictions based upon 
data characteristics as yet. In the context of Andrienko et al.’s recommendation that we “develop appropriate 
design rules and guidelines for interactive displays of spatial and temporal information” (Andrienko et al. 2010, 
1596) the guideline here given current knowledge may be to emphasize flexible and responsive interactions 
through which alternative representations can be accessed rather than data and context invariant rules for visual 
design. This is achievable in the kinds of dynamic environments used in geovisual analytics. 

We note that differences between the settings would be expected. All seven tasks could not be equally well 
completed with all of the data sets. However, this does not explain the differences between 2D and 3D as the 
same tasks were attempted with the same data set using the 2D and 3D visualizations. 

 

 
Figure 8: Comparing the performance measures time, confidence, complexity and plausibility for the different 
data sets and settings (W1-W4 and S1-S4) between 2D and 3D. 



 

Discussion and conclusions 

In our two experiments a total of 72 different informed participants were able to work with the two types of 
representations (2D and 3D) to visually analyze the data sets based on different directed exploratory tasks 
(Table 1). 1,454 insights, mostly of high plausibility, were collected. Consequently, we conclude that 2D bars or 
bar charts with reference frames on billboards are a viable option for displaying quantitative data in desktop-
based 3D virtual environments for elementary and synoptic tasks in a range of settings. Participants were able to 
work with the displays and report insights based on exploratory tasks. This confirms earlier findings developed 
in more controlled settings (Bleisch et al. 2008; Bleisch 2011) and suggests that these apply to use cases 
involving more complex data sets and tasks. Some evidence suggests that participants found analysis of data in 
relation to landform difficult even though they were able to do so. We may need to improve tools to help them if 
we deem these kinds of tasks to be important. 

For more detailed understanding, especially of the potential of three-dimensional representations (as suggested 
by MacEachren and Kraak 2001), we then analyzed the data predominantly for differences between the two 
representation types - 2D and 3D. However, contrary to our expectation, we found no significant difference 
between the two types of representation for the evaluated performance measures (time, confidence, complexity 
and plausibility) either in experiment E1 or E2. Additionally, analyzing the data for different reference sets 
(location, altitude or both) required us to reject our initial hypotheses: we found no evidence that the 3D display 
of the landform and setting either helps or hinders the interpretation of altitude differences and landform 
through our experiments; similarly, the 2D display of landform and setting neither helps nor hinders the 
interpretation of positional aspects such as spatial distribution. However, the analysis of comments, participants 
reporting more insights in relation to location in E2 as well as the lower confidence ratings for altitude related 
tasks in E1 indicate that visual analysis of quantitative data sets in relation to altitude and landform is not 
common. The fact that our participants were not used to analyzing data in relation to the landform may 
somewhat confound the results of this study. However, for the comparison between 2D and 3D this influence is 
minimized through the within-subject design, where participants were asked to perform exactly the same tasks 
with both representation types. 

Generally, conclusions from empirical evaluations are somewhat limited to the data sets used in testing, the 
particular interface developed and the group of participants used. We sought informed users as participants in 
our experiments. 72 students and staff from different universities and different ‘geo’-subjects ensured that the 
experiments were conducted with a large group of users that has interest in these types of interfaces and analysis 
tasks. Still, the results pertain to this user group and broad generalizations may need further research. 

Besides the analysis of the collected data as reported above, the data was additionally analyzed to see whether 
carry-over effects could be found. And indeed, analyzing the data according to ordering but across 
questionnaires (e.g. all first visualizations compared to all last visualizations) showed that participants generally 
completed tasks faster and were more confident in their findings later in the experiment. Balancing visualization 
orders in the different questionnaires employed in each of the experiments ensured that such effects were 
averaged and thus do not distort the overall results. But this does suggest that learning – in terms of both 
software, data and context – is likely to be important in geovisual analysis, and this seems particularly 
significant in contexts where complex tasks are being undertaken, such as those that our participants found 
difficult. These are the very tasks for which we consider geovisual analytics with 3D representations to be 
appropriate. This is an issue that should be considered by those designing experiments in which geovisual 
analytics is performed as well as those designing interfaces through which geovisual analytics is undertaken. 

For both, 2D and 3D visualizations, the different data sets and the context or settings to which the data belong 
strongly influenced the results of the data analysis as shown through variations in the analyzed appropriateness 
measures (task completion time, complexity, plausibility and confidence). It seems that for some data sets and 
settings a visual analysis in either 2D and 3D or a combination of both is preferable. It is difficult to derive 
advice on when to use 2D or 3D based on this study, as it was not specifically designed for this purpose. 
However, we have shown that based on the data set the decision to use either 2D or 3D is reasonably likely to 
make a difference to the data analysis undertaken. Further research should include the option of combining 2D 
and 3D views as advocated and tested by Sedlmair et al. (2009) in different contexts. Carefully designed 
combinations of juxtaposed (Gleicher et al. 2011) 2D and 3D views may minimize the increase in cognitive load 
as eye-movement is the fastest and easiest way to navigate (Ware 2008). Ware (2008) states that zooming in 2D 
is almost always achieved at a lower cognitive cost than viewpoint change in 3D. The results of this study did 
not find significant differences in task completion times between interactive 2D and 3D for the range of tasks 
that we evaluated. Additionally, linking the 2D and 3D views through brushing, as implemented but not 



 

evaluated by Bleisch and Nebiker (2008), and commonly used in multi-view 2D information visualization 
interfaces (Keim 2002), could be helpful. Once again, further evaluation is needed. 

The empirical data presented here shows that in our particular context no significant difference between visual 
data analysis using either 2D or 3D representations was found. However, importantly there was a variation in 
results depending on data sets and settings. It suggests that future research in this area should focus on when (in 
terms of data characteristics and settings) 3D geovisualizations are more or less useful than other types of 
representations and supporting means of establishing this exploration with appropriate environments for visual 
analysis rather than more general comparisons of 2D versus 3D. 
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